15 research outputs found

    Exploitation of X-band weather radar data in the Andes high mountains and its application in hydrology: a machine learning approach

    Get PDF
    Rainfall in the tropical Andes high mountains is paramount for understanding complex hydrological and ecological phenomena that take place in this distinctive area of the world. Here, rainfall drives imminent hazards such as severe floods, rainfall-induced landslides, different types of erosion, among others. Nonetheless, sparse and uneven distributed rain gauge networks as well as low- resolution satellite imagery are not sufficient to capture its high variability and complex dynamics in the irregular topography of high mountains at appropriate temporal and spatial scales. This results in both, a lack of knowledge about rainfall patterns, as well as a poor understanding of rainfall microphysics, which to date are largely underexplored in the tropical Andes. Therefore, this investigation focuses on the deployment and exploitation of single-polarization (SP) X-band weather radars in the Andean high mountain regions of southern Ecuador, applicable to quantitative precipitation estimation (QPE) and discharge forecasting. This work leverages radar rainfall data by exploring a machine learning (ML) approach. The main aims of the thesis were: (i) The deployment of a first X-band weather radar network in tropical high mountains, (ii) the physically-based QPE of X-band radar retrievals, (iii) the optimization of radar QPE by using a ML-based model and (iv) a discharge forecasting application using a ML-based model and SP X-band radar data. As a starting point, deployment of the first weather radar network in tropical high mountains was carried out. A complete framework for data transmission was set for communication among the network. The highest radar in the network (4450 m a.s.l.) was selected in this study for exploiting the potential of SP X-band radar data in the Andes. First and foremost, physically-based QPE was performed through the derivation of Z-R relationships. For this, data from three disdrometers at different geographic locations and elevation were used. Several rainfall events were selected in order to perform a classification of rainfall types based on the mean volume diameter (Dm [mm]). Derived Z-R relations confirmed the high variability in their parameters due to different rainfall types in the study area. Afterwards, the optimization of radar QPE was pursued by using a ML approach as an alternative to the common physically-based QPE method by means of the Z-R relation. For this, radar QPE was tackled by using two different approaches. The first one was conducted by implementing a step-wise approach where reflectivity correction is performed in a step-by-step basis (i.e., clutter removal, attenuation correction). Finally a locally derived Z-R relationship was applied for obtaining radar QPE. Rain gauge-bias adjustment was neglected because the availability of rain gauge data at near-real time is limited and infrequent in the study area. The second one was conducted by an implementation of a radar QPE model that used the Random Forest (RF) algorithm and reflectivity derived features as inputs for the model. Finally, the performances of both models were compared against rain gauge data. The results showed that the ML-based model outperformed the step-wise approach, making it possible to obtain radar QPE without the need of rain gauge data after the model was implemented. It also allowed to extend the useful range of the radar image (i.e., up to 50 km). Radar QPE can be generally used as input for discharge forecasting models if available. However, one could expect from ML-based models as RF, the ability to map radar data to the target variable (discharge) without any intermediate step (e.g., transformation from reflectivity to rainfall rate). Thus, a comparison for discharge forecasting was performed between RF models that used different input data type. Input data for the relevant models were obtained either from native reflectivity records (i.e., reflectivity corrected from unrealistic measurements) or derived radar-rainfall data (i.e., radar QPE). Results showed that both models performed alike. This proved the suitability of using native radar data (reflectivity) for discharge forecasting in mountain regions. This could be extrapolated in the advantages of deploying radar networks and use their information directly to fed early-warning systems regardless of the availability of rain gauges at ground. In summary, this investigation (i) participated on the deployment of the first weather radar network in tropical high mountains, (ii) significantly contributed to a deeper understanding of rainfall microphysics and its variability in the high tropical Andes by using disdrometer data and (iii) exploited, for the very first time, the native X-band radar reflectivity as a suitable input for ML-based models for both, optimized radar QPE and discharge forecasting. The latter highlighted the benefits and potentials of using a ML approach in radar hydrology. The research generally accounted for ground monitoring limitations commonly found in mountain regions and provided a promising alternative with leveraging the cost-effective X-band technology in the steep terrain of the Andean Cordillera

    The Spatio-Temporal Cloud Frequency Distribution in the Galapagos Archipelago as Seen from MODIS Cloud Mask Data

    No full text
    Clouds play an important role in the climate system; nonetheless, the relationship between climate change in general and regional cloud occurrence is not yet well understood. This particularly holds for remote areas such as the iconic Galapagos archipelago in Ecuador. As a first step towards a better understanding, we analyzed the spatio-temporal patterns of cloud cover over Galapagos. We found that cloud frequency and distribution exhibit large inter- and intra-annual variability due to the changing influence of climatic drivers (trade winds, sea surface temperature, El Niño/La Niña events) and spatial variations due to terrain characteristics and location within the archipelago. The highest cloud frequencies occur in mid-elevations on the slopes exposed to the southerly trade winds (south-east slopes). Towards the highlands (>900 m a.s.l), cloud frequency decreases, with a sharp leap towards high-level crater areas mainly on Isabela Island that frequently immerse into the trade inversion layer. With respect to the diurnal cycle, we found a lower cloud frequency over the islands in the evening than in the morning. Seasonally, cloud frequency is higher during the hot season (January–May) than in the cool season (June–December). However, spatial differences in cloudiness were more pronounced during the cool season months. We further analyzed two periods beyond average atmospheric forcing. During El Niño 2015, the cloud frequency was higher than usual, and differences between altitudes and aspects were less pronounced. La Niña 2007 led to negative anomalies in cloud frequency over the islands, with intensified differences between altitude and aspect. © 2023 by the authors

    Optimization of X-Band radar rainfall retrieval in the southern Andes of Ecuador using a random forest model

    No full text
    Despite many efforts of the radar community, quantitative precipitation estimation (QPE) from weather radar data remains a challenging topic. The high resolution of X-band radar imagery in space and time comes with an intricate correction process of reflectivity. The steep and high mountain topography of the Andes enhances its complexity. This study aims to optimize the rainfall derivation of the highest X-band radar in the world (4450 m a.s.l.) by using a random forest (RF) model and single Plan Position Indicator (PPI) scans. The performance of the RF model was evaluated in comparison with the traditional step-wise approach by using both, the Marshall-Palmer and a site-specific Z−R relationship. Since rain gauge networks are frequently unevenly distributed and hardly available at real time in mountain regions, bias adjustment was neglected. Results showed an improvement in the step-wise approach by using the site-specific (instead of the Marshall-Palmer) Z−R relationship. However, both models highly underestimate the rainfall rate (correlation coefficient < 0.69; slope up to 12). Contrary, the RF model greatly outperformed the step-wise approach in all testing locations and on different rainfall events (correlation coefficient up to 0.83; slope = 1.04). The results are promising and unveil a different approach to overcome the high attenuation issues inherent to X-band radars.Despite many efforts of the radar community, quantitative precipitation estimation (QPE) from weather radar data remains a challenging topic. The high resolution of X-band radar imagery in space and time comes with an intricate correction process of reflectivity. The steep and high mountain topography of the Andes enhances its complexity. This study aims to optimize the rainfall derivation of the highest X-band radar in the world (4450 m a.s.l.) by using a random forest (RF) model and single Plan Position Indicator (PPI) scans. The performance of the RF model was evaluated in comparison with the traditional step-wise approach by using both, the Marshall-Palmer and a site-specific Z−R relationship. Since rain gauge networks are frequently unevenly distributed and hardly available at real time in mountain regions, bias adjustment was neglected. Results showed an improvement in the step-wise approach by using the site-specific (instead of the Marshall-Palmer) Z−R relationship. However, both models highly underestimate the rainfall rate (correlation coefficient < 0.69; slope up to 12). Contrary, the RF model greatly outperformed the step-wise approach in all testing locations and on different rainfall events (correlation coefficient up to 0.83; slope = 1.04). The results are promising and unveil a different approach to overcome the high attenuation issues inherent to X-band radars

    Determination of climatic conditions related to precipitation anomalies in the tropical andes by means of the random forest algorithm and novel climate indices

    No full text
    Understanding precipitation and its relation with atmospheric and oceanic conditions is vital in the face of climate change. This is crucial in the Tropical Andes (TA) because millions of people depend on water originated in the cordillera. Unfortunately, the paucity of meteorological monitoring that exists in mountainous regions is accentuated in the tropics. In this context, climate indices, remotely sensed, and gridded datasets, are useful tools to study climate and precipitation in the TA, and additional climate indices can be calculated from reanalysis datasets. The combination of this information with traditional indices has the potential to improve our understanding of precipitation. Our objective was to use the k-means algorithm to regionalize precipitation in the TA (different regions have different climate), and then use the random forest algorithm to study the variables related to precipitation in each of these regions in seasonal timescales. Here, we show the suitability of the random forest algorithm to reveal climate processes and the high potential of the novel climate indices to improve the regressions. We found that convective available potential energy was the most important variable for precipitation in the northern TA, except for the Chocó, where v at 850 hPa was the most important one. Meanwhile, vertical integral of divergence of moisture flux was the most important one in the southern TA. Interestingly, in the DJF season when the South American low-level jet (SALLJ) is more active, u and v at 850 hPa showed their lowest relative importance and the total column of water vapour showed its maximum, this could indicate that precipitation anomalies are controlled by atmospheric moisture availability rather than by the speed of the SALLJ during DJF. These results deepen our understanding of precipitation anomalies in the TA and the related oceanic and atmospheric conditions. The proposed methodology was proven to be suitable and it could be used in the future to test and formulate new hypotheses, and to forecast seasonal precipitatio

    Flood early warning systems using machine learning techniques: the case of the Tomebamba catchment at the southern Andes of Ecuador

    No full text
    Worldwide, machine learning (ML) is increasingly being used for developing flood early warning systems (FEWSs). However, previous studies have not focused on establishing a methodology for determining the most efficient ML technique. We assessed FEWSs with three river states, No-alert, Pre-alert and Alert for flooding, for lead times between 1 to 12 h using the most common ML techniques, such as multi-layer perceptron (MLP), logistic regression (LR), K-nearest neighbors (KNN), naive Bayes (NB), and random forest (RF). The Tomebamba catchment in the tropical Andes of Ecuador was selected as a case study. For all lead times, MLP models achieve the highest performance followed by LR, with f1-macro (log-loss) scores of 0.82 (0.09) and 0.46 (0.20) for the 1 h and 12 h cases, respectively. The ranking was highly variable for the remaining ML techniques. According to the g-mean, LR models correctly forecast and show more stability at all states, while the MLP models perform better in the Pre-alert and Alert states. The proposed methodology for selecting the optimal ML technique for a FEWS can be extrapolated to other case studies. Future efforts are recommended to enhance the input data representation and develop communication applications to boost the awareness of society of floods

    The role of weather radar in rainfall estimation and its application in meteorological and hydrological modelling —a review

    No full text
    Radar-based rainfall information has been widely used in hydrological and meteorological applications, as it provides data with a high spatial and temporal resolution that improve rainfall representation. However, the broad diversity of studies makes it difficult to gather a con-densed overview of the usefulness and limitations of radar technology and its application in par-ticular situations. In this paper, a comprehensive review through a categorization of radar-related topics aims to provide a general picture of the current state of radar research. First, the importance and impact of the high temporal resolution of weather radar is discussed, followed by the description of quantitative precipitation estimation strategies. Afterwards, the use of radar data in rainfall nowcasting as well as its role in preparation of initial conditions for numerical weather predictions by assimilation is reviewed. Furthermore, the value of radar data in rainfall-runoff models with a focus on flash flood forecasting is documented. Finally, based on this review, conclusions of the most relevant challenges that need to be addressed and recommendations for further research are presented. This review paper supports the exploitation of radar data in its full capacity by providing key insights regarding the possibilities of including radar data in hydrological and meteorological applications. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Calibration of X-band radar for extreme events in a spatially complex precipitation region in north peru: machine learning vs. empirical approach

    No full text
    Cost-efficient single-polarized X-band radars are a feasible alternative due to their highsensitivity and resolution, which makes them well suited for complex precipitation patterns. Thefirst horizontal scanning weather radar in Peru was installed in Piura in 2019, after the devastatingimpact of the 2017 coastal El Niño. To obtain a calibrated rain rate from radar reflectivity, we employa modified empirical approach and draw a direct comparison to a well-established machine learningtechnique used for radar QPE. For both methods, preprocessing steps are required, such as clutterand noise elimination, atmospheric, geometric, and precipitation-induced attenuation correction,and hardware variations. For the new empirical approach, the corrected reflectivity is related to raingauge observations, and a spatially and temporally variable parameter set is iteratively determined.The machine learning approach uses a set of features mainly derived from the radar data. Therandom forest (RF) algorithm employed here learns from the features and builds decision trees toobtain quantitative precipitation estimates for each bin of detected reflectivity. Both methods capturethe spatial variability of rainfall quite well. Validating the empirical approach, it performed betterwith an overall linear regression slope of 0.65 and r of 0.82. The RF approach had limitations with thequantitative representation (slope = 0.44 and r = 0.65), but it more closely matches the reflectivitydistribution, and it is independent of real-time rain-gauge data. Possibly, a weighted mean of bothapproaches can be used operationally on a daily basi

    Clustering of rainfall types using micro rain radar and laser disdrometer observations in the tropical andes

    No full text
    Lack of rainfall information at high temporal resolution in areas with a complex topography as the Tropical Andes is one of the main obstacles to study its rainfall dynamics. Furthermore, rainfall types (e.g., stratiform, convective) are usually defined by using thresholds of some rainfall characteristics such as intensity and velocity. However, these thresholds highly depend on the local climate and the study area. In consequence, these thresholds are a constraining factor for the rainfall class definitions because they cannot be generalized. Thus, this study aims to analyze rainfall-event types by using a data-driven clustering approach based on the k-means algorithm that allows accounting for the similarities of rainfall characteristics of each rainfall type. It was carried out using three years of data retrieved from a vertically pointing Micro Rain Radar (MRR) and a laser disdrometer. The results show two main rainfall types (convective and stratiform) in the area which highly differ in their rainfall features. In addition, a mixed type was found as a subgroup of the stratiform type. The stratiform type was found more frequently throughout the year. Furthermore, rainfall events of short duration (less than 70 min) were prevalent in the study area. This study will contribute to analyze the rainfall formation processes and the vertical profile

    Influence of random forest hyperparameterization on short-term runoff forecasting in an andean mountain catchment

    No full text
    The Random Forest (RF) algorithm, a decision-tree-based technique, has become a promising approach for applications addressing runoff forecasting in remote areas. This machine learning approach can overcome the limitations of scarce spatio-temporal data and physical parameters needed for process-based hydrological models. However, the influence of RF hyperparameters is still uncertain and needs to be explored. Therefore, the aim of this study is to analyze the sensitivity of RF runoff forecasting models of varying lead time to the hyperparameters of the algorithm. For this, models were trained by using (a) default and (b) extensive hyperparameter combinations through a grid-search approach that allow reaching the optimal set. Model performances were assessed based on the R2, %Bias, and RMSE metrics. We found that: (i) The most influencing hyperparameter is the number of trees in the forest, however the combination of the depth of the tree and the number of features hyperparameters produced the highest variability-instability on the models. (ii) Hyperparameter optimization significantly improved model performance for higher lead times (12- and 24-h). For instance, the performance of the 12-h forecasting model under default RF hyperparameters improved to R2 = 0.41 after optimization (gain of 0.17). However, for short lead times (4-h) there was no significant model improvement (0.69 < R2 < 0.70). (iii) There is a range of values for each hyperparameter in which the performance of the model is not significantly affected but remains close to the optimal. Thus, a compromise between hyperparameter interactions (i.e., their values) can produce similar high model performances. Model improvements after optimization can be explained from a hydrological point of view, the generalization ability for lead times larger than the concentration time of the catchment tend to rely more on hyperparameterization than in what they can learn from the input data. This insight can help in the development of operational early warning systems
    corecore